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Introduction

In this project we provide our own implementation of an approach towards modeling uncertainty

in neural networks as proposed inWeight Uncertainty in Neural Networks [1].

Plain feedforward neural networks are susceptible to overfitting and are unable to successfully

model uncertainty in their predictions; leading to overconfident predictions even on out-of-

distribution data [2]. The approach in [1] aims to address both issues by proposing an algorithm

for learning a posterior distribution on the weights of a neural network as opposed to point values

(see Fig. 1).

Figure 1. Left: each weight has a fixed value, as provided by classical backpropagation. Right: each weight is

assigned a distribution, as provided by Bayes by Backprop. (Original image and caption from [1])

We re-implement the method in Python using the PyTorch library and conduct our own exper-

iments in addition to those provided in the original paper, obtaining new results associated with

this approach.

For regression, our experiments reproduce the original results, but indicate that they are sensitive

to changes in hyper-parameters. For classification, our results confirm the performance gains of

the approach over deterministic models, though diverge slightly for other experiments.

Methodology

Our objective function relies on minimising the KL divergence between the approximate varia-

tional posterior q(w|θ) and the true posterior P (w|D).

θ∗ = arg min
θ

KL[q(w|θ)‖P (w|D)] = arg min
θ

KL[q(w|θ)‖P (w)] − Eq(w|θ)[log P (D|w)]

= arg min
θ

F(D, θ)

The loss function is approximated by averaging samples of the weights from our variational pos-

terior q(w|θ). This loss is derived using the re-parameterization trick [3].

F(D, θ) ≈ 1
n

n∑
i=1

log q(wi|θ) − log P (D|wi)P (wi) (1)

The posterior predictive mean is computed as the Monte Carlo estimate of the first statistical

moment of the likelihood (2) and the uncertainty as the second statistical moment (3). The entropy

is used as a measure of uncertainty for classification tasks.

EP (ŷ|x̂)[ŷ] ≈ 1
n

n∑
i=1

EP (ŷ|x̂,wi)[ŷ] (2) V arP (ŷ|x̂)[ŷ] ≈ 1
n

n∑
i=1

V arP (ŷ|x̂,wi)[ŷ] (3)

Regression Experiments

We experimented using different combinations of priors and assessed the effect of those while

capturing the target function using a toy regression experiment with Gaussian noise σ2 = 0.02.

Figure 2. Regression of noisy data with two different scaled mixture priors: (left) Scaled Mixture prior with

probability mass concentrated around zero and (right) Scaled mixture prior with spread probability mass.

The method is capable of capturing the complexity of the data and estimate its uncertainty using

a mixture prior with most of the probability mass centered around zero whereas a spread prior

over-regularizes the model.

Bayes by backprop performs well compared to other baselines on the toy regression function, but

struggles to achieve the same result on a real-world dataset because its sensitiveness to changes

in hyper-parameters.

Table 1. Comparison against baselines.

Model MSE ↓ σ̄
Linear 0.1 -

Dropout 0.23 -

MC Dropout 0.28 0.05

Ensemble 0.09 0.01

BBB (Mixture Prior) 0.05 0.06

Table 2. Results of BBB on NASA dataset using different

likelihood variances

σl MSE ↓ σ 2σ
0.1 4.14 6% 11%
0.5 4.54 28% 50%
1.5 7.0 59% 87%
3.0 10.42 77% 97%
5.0 11.26 91% 99%

Pros and Cons of Bayes by Backprop

Pros :

Allows for uncertainty estimation in models by introducing stochasticity in the model

parameters.

Inherently self-regularizing via its formulation.

Significantly computationally cheaper than ensembles with similar performance.

Cons :

Highly sensitive to changes in hyperparameters, especially the choice of variance in the

likelihood term, or which prior to use.

Quantification of uncertainty of prediction not clear for classification. Ensemble methods

show higher entropy.

MNIST Classification Experiments

TheMNIST experiments consist of two parts. The performance of the Bayes by backpropmodel is

compared to baseline. Then the weights of the Bayes by backprop models are pruned depending

on their signal to noise ratio, and test accuracy with the pruned models are examined.

Significant performance gains are observed over baseline models with the ‘clean’ MNIST dataset,

performance across all models is similar on dirty-MNIST. We expected to see some performance

gains with Bayes by backprop but since all models reach the same performance, we suspect this

is just aleatoric uncertainty of the data which caps the performance.

Figure 3. Test error comparing baselines and the Bayes by Backprop model on the MNIST dataset (left) and the

dirty MNIST dataset (right).

The weights of the Bayes by backprop model with the lowest signal to noise ratio were removed

from the network. These models are trained on clean MNIST. The results are as follows:

Table 3. Entropy of predictions

Dataset MNIST dirty-MNIST

BBB model 10k 42k

Ensemble 12k 88k

Table 4. Removing weights with the smallest signal to

noise ratio

% of Weights Pruned 0 75 90 98 99.5

Test Error

(Mixture Prior) 3.4 3.5 4.9 25.5 47.9

Test Error

(Gaussian Prior) 3.2 3.9 4.8 20.4 40.0

Conclusion

Our project re-implements the approach proposed in Bayes by Backprop, confirming the

method’s performance gains over competing baselines in certain settings.

Our additional experiments extend the results derived in the original paper with varied

hyperparameters to better understand the behavior of such stochastic models.

Finally, our experiments also raise new questions about uncertainty quantification, which may

be used as avenues of inquiry for further research.
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